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Abstract In this paper the Galilean, scaling and translational self-similarity conditions for the 
A M s  hierarchy are analysed geometrically in term of the infinite-dimensional Grassmannian. 
The string equations of the one-matrix model correspond IO the Galilean self-similarity wndition 
for this hierarchy. We describe. in t e m  of the initial data for the zero-cnrvatLIre I-form of the 
AKNS hierarchy. themoduli space of these self-similar solutions in the Sat0 Grassmannian. As a 
by-product we characterize the points in the Segal-Wdson Grass& corresponding to the 
Sachs rational solutions of the AKNS equalkm and to the Nakamu~a-Himia ntional solutions of 
the Ne equation. 

1. Introduction 

Matrix models have been extensively used as a non-perturbative formulation of string theory. 
The interplay of matrix models with different integrable systems is of great interest. The 
Hermitian onematrix model partition function depends on the couplings as a solution of 
the Toda chain hierarchy, see for example [8]. This hierarchy can be understood as a 
composition of the Ablowitz-KaupNewell-Segur (Alms) hierarchy and the Toda chain, 
giving the later auto-Bacickiund transformations of the former, see for example [12, 3, 141. 
Besides, there is a constraint to be satisfied, the so-called string equation, that corresponds, as 
we shall show, to a Galilean self-similarity condition. In fact, the N-dimensional Hermitian 
matrix model is associated to the solution obtained after N consecutive auto-BacHund 
transformations to the solution of the AKNS hierarchy which is a Galilean self-similar 
solution of the heat hierarchy (this is unique up to a normalization constant). In [4] the r6le 
of the AKNS hierarchy in the Toda chain is rediscovered and a discussion of the associated 
topological field theory is given. 

Let us now present some facts about the AKNS hierarchy. In [2] this hierarchy was used 
implicitly to solve a number of equations by a multicomponent inverse scattering method 
or inverse spectral transform [l]. But the hierarchy appeared explicitly in [91 where it was 
extensively studied 17, 161. In [6] the finite gap solutions were analysed and for the real 
version, the nonlinear Schrodinger (NLS) hierarchy, this was done in [19]. One can express 
these solutions in terms of theta functions for the corresponding hyperelliptic curve. In the 
papers 5 2 3 1  a detailed account of the Grassmannian model, Baker and r-functions can be 
found. 
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In this paper we analyse the Sat0 Grassmannian geometry of the moduli space of 
solutions to the string equation of the Hermitian one-matrix model, and more generally of 
self-similar solutions under any of the local symmetries of the AKNs hierarchy. These are 
Galilean, scaling and translational transformations. We give a parametrization of this moduli 
space in terms of the initial condition for the zero-curvature 1 - f a n  of the AKNS hierarchy. 
As a by-product we obtain the points in the Segal-Wilson Grassmannian corresponding to 
the weighted scaling self-similar rational solutions [ZO, 151 of the AKNS hierarchy. 

In the second section we introduce the AKNS and NLS* hierarchies. We also present a 
zero-curvature type formulation of the string equations. 

In the following section we consider the Birkhoff factorization problem for the AKNs 
hierarchy and its relation with the Grassmannian. There we formulate the two main results 
of the paper. The first one determines the stucture of the initial conditions for which the 
Birkhoff factorization problem implies self-similar solutions, and the second giving the 
structure of the set of points in the Grassmannian associated with solutions to the string 
equations. That is, we analyse the moduli space in the Grassmannian. Observe the similarity 
of these results to those in [ 111, we refer the reader to that paper when the proofs are omitted. 

Finally, in section 4 we examine several examples. We consider the mixed Galilean 
and translational self-similar condition, which corresponds to Galilean self-similarity in 
appropriate shifted coordinates. We obtain points that do not belong to the Segal-Wilson 
Grassmannian but to the Sat0 Grassmannian and can be expressed in terms of Gaussian 
and Weber's parabolic cylinder functions. The scaling case with different weights is 
also considered in shifted coordinates. Now, there ae  some points that belong to the 
Segal-Wilson Grassmannian, they correspond to the rational solutions of [ZO] for the AKNS 
equation, and some of them reduce to the NLS+ equation giving the rational solutions of 
[151. The subspaces in the Sat0 Grassmannian can be expressed in terms of Tricomi- 
Kummer's hypergeometric confluent functions that, in the mentioned rational case, are 
Laurent polynomials. 

2 AKNS hierarchy and string equations 

We begin this section with the definition of the integrable equations known as the AKNS 
hierarchy, which is a complexified version of the NLS hierarchy. It is defined in terms 
of a couple of scalar functions p , q  that depend on an infinite number of variables 
t := {t&o E C* which are local coordinates for the time manifold 7. In this convention 
we adopted tl  to be the space coordinate, usually denoted by x ,  and t,, with n > 1 
corresponds to a time variable. 

Definition 2.1. The AKNS hierarchy for p ,  q is the following collection of compatible 
equations 

a,P = Z P , + ~  anq = -2qn+l 
where n 2 0, a, := and pn ,  qn and h. are defined recursively by the relations 
p -1 - zalpn-l  + phz-1 q,, =--$%qn-l alh, = pqn -qpn  n 2 1 

with the initial data 

p o = q o = O ~  h o = 1 .  

From the recurrence relations one gets, for example, 

P I = P  q1=q h 1 = 0  
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p2 = $alp q2 = -+alq hz = -1 2 pq 
h3 = +(palq - = +a:P - L 2 1 2  1 2  q3 = ?arq - ?Pq 1~ 4 . .  

The equations for n = 0 flow are 

a0p = 2~ 

2a2p = a:p - 2pzq 

4a3p = a:p - ciPqalp 

aoq = -2q. 
The n = 1 flow is an identity. For n = 2 the equations are 

2a2q = -a;q + 2pq2 
and for n = 3 one has 

4a3q = a:q - 6pqalq. 
Notice that the real reduction q = ~ p *  and t,, H it,, produces the NLS* hierarchy 

for which the tz-flow is 2iazp = -atp i 21p12p, the NLS* equation, and the +flow is 

Definition 2.2. The NLS* hierarchy 
4 % ~  = -a:p i 6iplZalp. 

ianp = 2 ~ . + ~  
is defined in terms of the recursion relations 

- - 1. 21alPn-r + ph,-] alh. = ~ 2 1 m j p ;  
and po = 0, ho = 1. 

An essential feature of the AKNS hierarchy relies in its zero-curvature formulation 
[2, 9, 161. If [E, H, F) is the standard Weyl-Cartan basis for the simple Lie algebra 
sI(2, C) of 2 x 2 complex, traceless matrices we define 

Q, :=~p ,E+h ,H+q ,F  
and denote by 

n 
L,(A) := CA"Q.-, 

m=O 

where A is a complex spectral parameter. Introducing the differential 1-form 

one is allowed to formulate the AKNS hierarchy as the zero-curvature condition 

[ d - x , d - x ] = O  
where d is the exterior derivative operator on the differential forms AT.  

For the NLS* hierarchy one also has a zero-curvature formulation. Now the Q. = 
pnE + ih,H p,*F are maps from 7 into the real Lie algebras su(2) and m(1.1) 
respectively. 

Let us now describe the local symmetries of the hierarchy. First we have the shifts in 
the time variables, the infinite set of translational symmetries are isospectral symmetries of 
the hierarchy in the sense that they preserve the associated spectral problem. Let I9 be 

~ ( t )  := t + e 

e := {S*),>O E c m  

the action of translations, where 

are the shifts of the time variables. 
Then it follows 
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Proposition 2.1. If ( p .  q )  is a solution to the AKNS hierarchy then so is (19*p, 9.q). 
But there are also two local non-isospectral symme'aies. One is the scaling symmetry, and 
the other is the Galilean symmetry. Next we define both of them. 

Defvlition 2.3. The Galilean transformation t H ya(t) is given by 

F Guil and M M& 

where a E C. 
The scaling transformation t H <b(t) is represented by the relations 

Sb(t)n := enbt,, 

where b E C. 
One can show that 

Proposition 2.2. If ( p ,  q )  is a solution of the AKNS hierarchy then so are (y,'p, yzq) and 

The related fundamental vector fields, infinitesimal generators of the action of 
(dsb~, eb&). 

translation, Galilean and scaling transformations are given by 

respectively. 
Consider the following vector field 

X := 1.9 + a y +  b< 

with 

1.9 = Ce.a,, 
">O 

defining a superposition of translations, Galilean and scaling transformations. 
If ( p .  q )  is a solution of the AKNS hierarchy then there is a I-parameter family of 

solutions ( p r ,  qr) generated by the vector field X. We have the important notion: 
Definition 2.4. A self-similar solution under any of the mentioned symmetries is a solution 
which remains invariant under the corresponding transformation. 
Then we have, 
Proposition 2.3. A solution ( p ,  q )  of the AKNS hierarchy is self-similar under the action of 
the vector field X if and only if it satisfies the generalized string equations 

X p + b p = O  X q + b q = O .  (2.1) 
Notice that when X = 7 + ~ n s o 6 ' ' a ,  one can perform the coordinate transformation 
zn+l H tn+l + e& + 1). Thus, the coefficient S. is equivalent to a shift in the time 
coordinate &+I. 

Now, if X = <+&,6',a, we can define the transformation t.+l H t,,+l+e,+l/(b(n+ 
1)) and obtain in the new coordinates a vector field corresponding to scaling and a term of 
type &ao. This last term can be understood as follows. Given a solution ( p ,  q )  to the AKNS 
hierarchy then (exp(b(1 +2&))5;p. (exp(b(1 -26'0))&) is a solution as well. So solutions 
self-similar under the vector field X correspond in adequate coordinates, to self-similarity 
under this particular scaling, that we shall call (1 + 200, 1 - 200) weighted scaling. 

One has 
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Proposition 2.4. If ( p ,  q) is a solution to the AKNS hierarchy self-similar under the action 
of the vector field 

r+Cenan 
"20 

then it is also self-similar under the action of the vector field 

This proposition simply says that the L_,-Virasoro constraint implies the LO-Vioro 
constraint 

If a = b = 0 one is led to the translational self-similar solutions of the AKNS hierarchy, 
that is, the finite-gap solutions of the integrable equation in the spirit of Novikov. The 
solutions of that type can be constructed in terms of Riemann surfaces, in paaicular 
hyperelliptic curves, and the corresponding r and Baker functions can be expressed in 
terms of theta functions of such curves (see [5, 61 for the AKNS equation and [19] for 
the NLS equation). The Galilean self-similarity condition in the KdV case is considered by 
Novikov 1171 as a quantized version of the finite-gap solutions. 

In general the self-similarity condition can be reformulated as a zero-curvature-type 
condition. We define the outer derivative 

d 
6 := (a 4- bA)- 

dA 
and 

M := ( x ,  X). 
Here (., .) is the standard pairing between 1-forms and vector fields. Then one has [ l l ]  

Theorem 2.1. The zero-curvature-type condition 

[d - x . 6  - M] = 0 (2.4) 
is equivalent to the string equation (2.1). 

a n d & , a , b E R .  
All results regarding symmetries can be reduced to the NLs* hierarchy with 0. = i;,, 

3. Grassmannians and the moduli space for the string equations 

In this section we use the Grassmannian manifold Gr@) to describe the AKNS flows, and 
to characterize geometrically the string equations for the self-similar solutions of the AKNS 
hierarchy. This manifold appears when one considers the Birkhoff factorization problem. 

Recall that x defines a 1-form with values in the loop algebra Ld(2,  C) of smooth 
maps from the circle S' := [A E C : [AI = 11 to the simple Lie algebra sI(2, C). We define 
an infinite set of commuting flows in the corresponding loop group LSL(2, C) 

W ,  A) := exp(t(UW . g(A) 
where t(h) := Cn,oAntn I and g is the initial condition. Denote by L+SL(2, C) those loops 
which have a holomorphic extension to the interior of S1 [18], and by L;SL(2, C) those 
which extend analytically to the exterior of the circle and are normalized by the identity at 
W. 

The Bukhoff factorization problem for a given @(t) consists in finding the representation * = *I1 ' *+ (3.1) 
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where @- E L;SL(2, C) and @+ E L+SL(2, C), and is connected with the AKNS hierarchy. 
The element @- can be parametrized by functions ( p ,  q )  in such a way that @- is a solution 
to the factorization problem if and only if ( p ,  q)  is a solution to the AICNS hierarchy [ lo ] .  

F Guil and M Maiias 

One also has that 

x := d@+ . @:' = P+Ad@- (Hdt(A)) 

LsI(2, C) = L+S[(2, C) e4 LTd(2, C) . 

(3.2) 
is the zero-curvature 1-form for the AKNS hierarchy [lo].  Here id = P+ + P- is the 
resolution of the identity related to the splitting 

Observe that 

(3.3) 

One can conclude from these considerations that the projection of the commuting flows 
@(t) on the Grassmannian manifold [18, 221 

LSL(2, C)/LtSL(2,  C) E Gr(2) 

can be described in terms of the AKNS hierarchy [ lo ,  231. 
The element g determines a point in the Grassmannian manifold up to the gauge freedom 

g H g .h, where h E LtSL(2, C). A solution of the AKNS hierarchy does not change when 
g(A) H exp(p(A)H) . g(A) if exp(pH) E L;SL(2, C). We can say that the moduli space 
for the AKNS hierarchy contains the double co-set space 

M := r-\LSL(2, C)/L'SL(2, C) 

where r- is the Abelian subgroup with Lie algebra L;CyH. 

given in [5, 231. The Baker function w ( t )  E LSL(2, C) corresponds to 
This makes a connection with the Grassmannian description for the AKNS hierarchy 

w = @- . exp(rH) = @+. g-' . 
If we introduce the notation 

then we have the associated subspace 

W = C (A" ( 6 2 ,  -611, A" (Pz,  PI)},>^ 
with AW c W, in the Grassmannian Grn) [18, 221. The Baker function is the unique 
function with its rows taking its values in W such that P+(w.  exp(-tH)) = 1. Obviously 
we have 

a,w = L,W 

a,,w = L , W .  

and also 

The rows of the adjoint Baker function w* = ( w - ' ) ~  are maps into the subspace 

where 

Q := ($01, $02) 6 := (61, @ 2 ) .  
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We shall adopt this subspace as a representative of the co-set g . L+SL(2, C). 
Let us now try to find for which initial conditions g one gets self-similar solutions, 

i.e. points in the Grassmannian that are connected to self-similar solutions of the AKNS 
hierarchy. 

Recall that we have the derivation 8 E DerL+sI(2, C) defined in (2.2) and the vector 
M ( t )  E L+sI(2, C) defined in (2.3). One has [ll]: 

Theorem 3.1. If the initial condition g satisfies the equation 

Sg . g-' + AdgK = (0 + f )H (3.4) 

for some K E L+s1(2, C) and some f E L;C, then the corresponding solution to the AKNS 
hierarchy satisfies the string equation (2.1). 

Notice that the function f can be transformed into 

f (A)  H f (A) + (0 + A b ) z ( h )  

where E L;C. If b # 0 then one transforms f H 0, but when b = 0, a # 0 one is only 
allowed to do f H CA-'; finally if a = b = 0 we can not remove f. 

The Sat0 Grassmannian [21] contains much more self-similar solutions than the Segal- 
Wilson one [22]. In fact, only the finite-gap solutions-pure translational self-similarity- 
and the scaling self-similar rational solutions of Sachs [ZO] for the AKNS equation, and 
the corresponding Nakamura-Hirota solutions for NLs+ equation [U], are found in this 
Grassmannian. Therefore, we shall consider the Sat0 Grassmannian Gr"). The statements 
above, which are rigorous in the Segal-Wilson case, can be extended to the Sat0 frame if 
the formal group L;SL(2, Q is considered only when acting by its adjoint action or by 
gauge transformations in the Lie algebra sI(2, C)[[A-', A]. In this context (2.4) and (3.4) 
still hold. 

Notice that for each equivalence class in M an element g can be taken such that 
lng E sI(2, C)[[A-'), and that any element in the co-set g . L+SL(2, C) gives the same 
point in the Grassmannian. One has: 

Theorem 3.2. The subspace 

with @(A), &(A) E C2, corresponds to a self-similar solution of the AKNS hierarchy,under 
the action of the vector field X = ay  + bc + C,,0,&, if @, 5 have the asymptotic 
expansion 

@(A) - ( 1 + (oil A-' + ... , 
6 ( A )  

(02i l - '  + (ozzA-' + t.. ) 
1 +hi A-' + ... ) 

A -+ 00 

A -+ 00 ( @llA-l + @ I ~ A - ~  +.. , , 
and satisfy: 

(i) When b # 0 the ordinary differential equations 
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(U) When b = 0, a # 0 the ordinary differential equations 

(iii) When a = b = 0 the algebraic relations 

where 

has the asymptotic expansion -- 
f (A) - f.A-" A + CO 

">O 
with the recursion relation 

Here we denote FO = F l t , ~ .  

Proof: As in [ l l ]  we have 

K = ( X  It* ,fi) . 
Observe that 

K = ~ O , L . I t ~  =Adg-'(OH) - P_Adg-'OH 
">O 

where we have used (@-Iko)-l = g. Therefore, we have 

AdgK = OH - AdgP-Adg-'OH. (3.7) 
When b # 0 we can remove the function f ,  and from (3.4) one gets the desired result. 

When b = 0, a # 0 we have a contribution from f of type CA-'. This can be handled as 
follows. With the aid of (3.7) the equation (3.4) can be written as 

a%. g-l - AdgP-Adg-IOH = cA-'H. 
dA 

Now, because the residue at A = 0 of the first term on the left-hand side of the equation 
above vanishes we have 

-resi,aAdg-'OH = cH 
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or 

thus 

">O 

When a = b = 0 equations (3.4) and (3.6) imply the form of f  in the first equality of 
(3.3,  the second expression follows from (3.7) and (3.3). With this the proof is completed. 
U 

This theorem provides us with a parametrization of the moduli space of self-similar 
solutions of the AKNS hierarchy under the action of the vector field X in terms of initial 
conditions for the zero-curvature 1-form x .  Notice that the equation characterizing g 
depends on K = Cn,06'nLnIt=o. Thus, if 8 is a polynomial of degree N the matrix 
K depends on 3N constants [ p , ,  q,,. but the h, can be expressed as polynomials 
of {pm,  qmG;ll. When a or b do not vanish we have an inclusion of this 2Ndmensional 
algebraic variety into the Sat0 Grassmannian, but one of the parameters can be. supressed 
because the freedom ( p ,  q )  n (e'p, e-'q). Thus, there is an inclusion of a (2N - 1)- 
dimensional algebraic variety into the Sat0 Grassmannian providing us with a description 
of the moduli space. When a = b = 0 one has the additional dependence on f which is 
a function of K only, and therefore one has an inclusion of that algebraic variety into the 
Segal-Wilson Grassmannian, the finite-gap solutions associated with hyperelliptic curves. 

4. Examples 

We give in this section a concrete analysis of the ODES characterizing the points in the 
Grassmannian associated with self-simiIar solutions. We start with the Galilean case 
and then we study the weighted-scaling case. For the Galilean case we see that the 
points corresponding to self-similar solutions can be expressed in terms of Gaussian and 
Weber's parabolic cylinder functions, and that they never belong to the Segal-When 
Grassmannian but to the Sat0 Grassmamian. In the weighted-scaling case we find that 
the points in the Grassmannian can be constructed with the aid of Tricomi-Kummer's 
confluent hypergeometric functions. We see that for certain cases, when the rows of g are, 
Laurent polynomials of different degrees and therefore define points in the Segal-Wilson 
Grassmannian, these points are associated to the rational solutions of the AKNS equation 
found in [20] and to the corresponding rational solutions of the NLS+ equation of [El. 

4.1. Galilean self-similariry I 
We are going to consider the string equation defined by the vector field X = -y + &al. 

As we have already discussed this corresponds to self-similar solutions under the Galilean 
symmetry in the shifted coordinates t2 H f2 + 46'1 and t,, H tn for n # 2. This shift allows 
us to avoid the singularities of the solution at tz = 0. 

The form of the initial condition is 
g = id +h-'Xl + . . . 

which corresponds to a self-similar solution under the vector field X if it satisfies 
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that for X. reads 

F Guil and M Mafias 

If we introduce the notation 

it results 

that, together with X: = hpo and X; = -hqo, gives us the matrix g. Observe that 
XL = X& = 0 and Ak+1 = Ba+l = 0. The expansion never converges; we can choose 
poqo such that the first row of g is polynomial in A-' but the the second row does not 
converge. We conclude that this solution belongs to the Sat0 Grassmannian and not to the 
Segal-Wilson one. 

Now, writing 
A X+ '=( X- B ) (4.10) 

equation (4.8) for A ,  B reads 

h2- d2A - 201h2 (h + 1) poqo dA 81 A = 0 (4.11) + y p o q o  dh2 

d2A pogo dA 81 
dh2 dh h2- + 201h2 (h + 7) - - y p o q o  (1 - A = 0 (4.12) 

and for X+, X- gives 

(4.13) 

(4.14) 

Equations (4.11) and (4.12) can be transformed into confluent hypergeometric equations. 
Recall that the Tricomi-Kummer's confluent hypergeometric function U(a,  c, z) [13] is a 
solution of 

d2U dU 
dz2 dz 

z- +(c -z)- - a U  = 0 

and has the asymptotic expansion [13] 

where (CY)" = r(a+ n)/r(n). One can show that 

~ ( h )  = ( e 1 h 2 ) v  (+. f. ed2)  
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where 

LC. := ;e1poq0.  
Thus, 

For B one only needs to replace in the expression for A the parameters 81 H -81 and 
p H -p. Hence 

From (4.13) and (4.14) one gets the corresponding asymptotic expansions for X+, X-. In 
terms of the Weber's parabolic cylinder functions 1131 one has for example 

and an analogous expression for B is obtained once 81 and p are multiplied by -1. As we 
have remarked before, the Galilean self-similar solutions am always associated to subspaces 
in the Sat0 Grassmannian which never belongs to the Segal-Wilson Grassmannian. 

For the NLS* reduction we need q = ~ p ' .  therefore 
J*g(A*)'J* =g(A)-l 

where Jt = id and 3- = H. Taking into account (4.11t(4.14) this is fulfilled when 
8, = i&,& E B, the initial condition qo = + p i  and~A(A*)* = B(A). Therefore, 
p = r i&/2  lpolz E R. 

4.2. Scaling self-similarity 

We are going now to consider the string equation corresponding to the vector field 
X = s+8o&+@l&. As we have already discussed this corresponds to self-similar solutions 
under a (1 + 7.80, 1 - 280) weighted scaling in the shifted coordinates t l  H tl + 81 and 
t. H t. for n > 1. This last shift allows us to avoid possible singularities of the solution at 
tl = 0. 

Let 
g = id+A-'X1+ ... 

be the initial condition for the commuting flows @(t). In order to have self-similar solutions 
under the vector field X, it must satisfy 

(4.15) dg Az + g(6'ipoE + (00 + 6iA)H + = (00 + 0iA)Hg 

which implies for the matrix coefficients X. of the Laurent expansion of g 

-nx, - e m ,  x,i + eIx.(po~ + q o w  = elw, X.+~I. 
With the use of (4.9) one finds the recurrence laws 

and 
el P o  B, = -Xi elqo + A, = -X, n n 
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that together with X: = 4po and X; = -440 give us the matrix g. There are cases for 
which this expansion is a polynomial in A-' and represents therefore not only an asymptotic 
expansion but also a well defined function. We require 

0fpoqo = (N+ -I- 200)" = (N-20o)N- (4.16) 

F Cui1 and M Maiim 

with N" E N U  (0), so that 

X:,A,=O n>N'  

and 

Xi, B. = O  n z N - .  

Hence, we get a polynomial g in A-' of degree N+ in the first row and degree N -  in the 
second one. Equations (4.16) imply 

20, = N-N+ E z e:poqo = N+N- E N U  (0). 
This gives points in Segal-Wilson Grassmannian associated with solutions of the AKNS 
hierarchy (p, q)  which are self-similar under the (1 + N+ - N-,  1 - N +  + N - )  weighted 
scaling symmetry. 

Using (4.10), equation (4.15) for A ,  B reads 

(4.17) 

(4.18) 

d2A dA 
dA2 dA 

dB d2B 
dA2 dA 

A'- + ((1 - 20o)A -,20rA2)- - 0:poqoA = 0 

A'- + ((1 + 2$)1+ 201A')- - 0:poqoB = 0 

and for X+, X- we obtain the expressions 

(4.19) 

(4.20) 

Equations (4.17) and (4.18) are equivalent to confluent hypergeometric equations. Consider 
the roots (p+, p-)  of 

2 - WOP - 0:poqo = 0 
we get for 00 the value 

2 200 = P+ + P- P+P- = -0, pogo, 

If we define 

A(A) = A'+U(20jA) 

then V(z )  satisfies 

d2U dU 
dz2 dz 

2- + (1 +p+ --/.U)- -&+U = 0 

thus we are dealing with the Tricomi-Kummer's confluent hypergeometric function 
U(a,  c, z) with a = p+ and c = 1 + p+ - p-, and we deduce for A(A) the behaviour 
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For B the analysis is the same; we only need to replace 26'0 and 281 by -26'0 and -281, 
respectively, in the formulae above. So the asymptotic expansion for B is 

From the formulae (4.19) and (4.20) we obtain the asymptotic expansions for X+ and X-. 
We have 

Let us notice that when p+ + P- = 0 the function U can be expressed in terms of the 
Macdonalds-Basset function 1131; for example, if z = B I A ,  we have 

For the NU* reduction we need that &+, p- be solutions of 

In the polynomial case of the AKNS hierarchy we must have (or the other way around) 

Again, from the asymptotic expansions, we see that A, X+ and B ,  X- are polynomials in 
A-' of degree N' and N - ,  respectively. The solutions in the polynomial case are the 
rational solutions of the AKNS hierarchy appearing in [20]. To connect with the notation of 
that paper we notice that 1 + p - q = N +  - N -  and that p = N + N - ,  where p ,  q are the 
degree of the polynomials corresponding to the tau functions U, 7 for the AKNS hierarchy 
delined in that papet. This implies that q = (N' - 1 ) ( W  + 1). and so n - k = N +  and 
k + 1 = N -  or vice versa (n + 1 = N+ + N - ) ,  where n, k are those of [20]. 

One can easily see that the polynomial case described above is the only case for which 
the asymptotic series converges and defines a function in a neighbourhood of A = W. 
Therefore, they are the only points in the Segal-Wilson Grassmannian corresponding to 
weighted-scaling self-similar solutions, generically we have points in the Sat0 Grassmannian. 
Observe that for the NLS* hierarchies one arrives at the condition 2& = N - N +  with 6'0 E a, 
so 6'0 = 0. Then p+ = &\&pol in the N U +  case and p+ = ii)61pal for the NW- case. So 
that none of the Sachs rational solutions for the AKNS system reduces to the NLS- equation, 
furthermore it is known that this equation does not have rational solutions. Only for the 
NLS+ hierarchy do we have points in the Segal-Wilson Grassmannian corresponding to the 
reduced Sachs solutions, the Nakamura-Hirota rational solutions for equation [15]. 
Now, N+ = N -  and n = 2k + 1. Notice that in [15] it is considered that not only n = Zk, 
when they analyse the Boussinesq system, as was claimed in [20], but also n = 2k + 1, 
when they studied the NLS+ equation. 

Pmposition4.1. The ( n , k )  rational solution for the AKNS hierarchy found in 1201 
corresponds to the point in the Segal-Wilson Grassmannian associated to the co-set 
g . L+SL(2, C), where g E L;SL(2, C) is given by the following hurent polynomial 

pz - 2i& f I&pol* = 0. 

/A+ = -N + p - = N - .  

Summarizing, for the Segal-Wilson case we have 
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where n + 1 = N+ + N- and k + 1 =~ N-. These are the only weighted-scaling self-similar 
solutions with a corresponding point in the Segal-Wilson Grassmannian. None of these 
reduce to the NLs- hierarchy and only when N' = N -  (n = 2k + l), -p: = qo they 
reduce to solutions of the NLS+ hierarchy. 
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